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ABSTRACT To overcome the problems caused by the limited battery lifetime in multiple-unmanned
aerial vehicle (UAV) wireless networks, we propose a hierarchical multi-agent reinforcement learning (RL)
framework to maximize the energy efficiency (EE) of UAVs by finding the optimal frequency reuse factor
and transmit power. The proposed algorithm consists of distributed inner-loop RL for transmit power
control of the UAV terminal (UT) and centralized outer-loop RL for finding the optimal frequency reuse
factor. Specifically, the proposed algorithm adjusts these two factors jointly to effectively mitigate intercell
interference and reduce undesired transmit power consumption in multi-UAV wireless networks. We show
that, for this reason, the proposed algorithm outperforms conventional algorithms, such as a random action
algorithmwith a fixed frequency reuse factor and a hierarchical multi-agent Q-learning algorithmwith binary
transmit power controls. Furthermore, even in the environment where UTs are continuously moving based
on the mixed mobility model, we show that the proposed algorithm can find the best reward when compared
to conventional algorithms.

INDEX TERMS Unmanned aerial vehicle, optimal frequency reuse, transmit power control, energy
efficiency, hierarchical multi-agent Q-learning, multi-UAV wireless network.

I. INTRODUCTION
The utilization of unmanned aerial vehicles (UAVs) is one of
the promising characteristics for future sixth-generation (6G)
wireless networks because the key objective of 6G is to pro-
vide three-dimensional (3D) wireless connectivity [1]. There
are many challenges to achieve this goal, e.g., 3D channel
modeling, multilayered network architecture design, seam-
less 3D handover, and network lifetimemaximization [1], [2].
In particular, the limited battery lifetime of UAVs shortens
the time UAVs can operate [3], [4]. Considering this bat-
tery problem, many studies have been conducted to improve
UAV’s energy efficiency (EE) [5], [6] [7]. Specifically, in [5],
the authors proposed a multi-agent reinforcement learning
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(RL)-based UAV deployment and power control algorithm
for maximizing EE in multi-UAV wireless networks. Addi-
tionally, the authors of [6] proposed an online random access
protocol by adjusting the packet transmission opportunities
based on the residual energy of drones in S-ALOHA-based
swarming drone networks.

In addition, finding optimal frequency reuse is a crucial
enabling technologies to simultaneously maximize network-
wide resource utilization efficiency and EE in practical wire-
less communication networks. First, several frequency reuse
techniques have been introduced to mitigate intracell and
intercell interferences when sharing frequency resources in
wireless networks [8]–[10]. The authors of [8] compared
two representative 4G standards, IEEE 802.16m (WiMAX)
and 3GPP-LTE, which provide adaptive fractional frequency
reuse (FFR) techniques based on hard FFR shutting off

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 39555

https://orcid.org/0000-0002-1796-1495
https://orcid.org/0000-0003-1841-8352
https://orcid.org/0000-0001-9092-5039
https://orcid.org/0000-0002-4485-9592
https://orcid.org/0000-0001-5509-9202
https://orcid.org/0000-0002-9352-0237


S. Lee et al.: Optimal Frequency Reuse and Power Control in Multi-UAV Wireless Networks

TABLE 1. Summary of notations and symbols.

interfering BSs and soft FFR limiting the transmit power of
interfering BSs. Soft FFR can be beneficial because lower-
power frequency resources can be exploited to support addi-
tional cell center users compared to hard FFR. In [9], strict
FFR was used to partition a cell area into spatial regions
with different frequency reuse factors, and soft frequency
reuse (SFR) was used to divide a cell area into two regions:
an inner region where the entire frequency resources were
available and an outer region where a small fraction of
the resources were available. SFR can be more bandwidth-
efficient than strict FFR but results in more intercell inter-
ference for both cell-interior users and edge users. That is,
strict FFR has the advantage of reducing interference between
cell-interior users and cell-edge users, as it does not share
any frequencies. To accommodate flying BSs, the authors
of [10] proposed a flexible SFR (F-SFR) technique to assign a
frequency resource plan that considered the dynamic network
topology and maximizes inter-BS distance among cells with
the same resource plan by assigning different SFR levels in
each cell. Since this technique aimed at supporting aerial BSs
and ground users, it is not easy to apply directly to a wireless
network consisting of ground BSs and aerial terminals.

Several hierarchical reinforcement approaches have been
proposed to improve the performance of multi-UAV wire-
less networks [11]–[13]. In [11], to resolve the problem of
limited data collection coverage of the backscatter sensor
nodes, the hierarchical deep reinforcement learning (DRL)
framework was proposed to extend the data collection cov-
erage and minimize the total flight time of the rechargeable

UAVswhen performing data collecting missions. The authors
of [12] proposed a hierarchical deep Q-network (h-DQN)
model for dynamic spectrum access. The proposed h-DQN
shows faster convergence, higher performance, and higher
channel utilization than Q-learning for dynamic sensing
(QADS) [14] or deep reinforcement learning for dynamic
access (DRLDA) [15]. Additional, in [13], a hierarchical
scheduling architecture with top-layer scheduling for satellite
selection and foundation-layer precise scheduling for urgent
tasks was introduced to solve the real-time earth observation
satellite (EOS) scheduling problem. Here, Q-learning with
an adaptive action selection strategy was proposed to solve
the Markov decision process model more efficiently. Further-
more, it is expected to realize real-time task scheduling of
agile satellites. However, in complicated three-dimensional
network environments where UAVs are continuouslymoving,
it is still difficult to utilize conventional algorithms in practice
due to their huge computational complexity.

In this paper, we assume multicell network environments
in which multiple UAV terminals (UTs) perform their own
missions, and each UT transmits its information to ground
control systems (GCSs). The goal of this paper is to find
the optimal frequency reuse factor and transmit power for
maximizing EE in multi-UAV wireless networks by using
a hierarchical multi-agent reinforcement learning algorithm.
The main contributions of this paper are as follows:
• To maximize network-wide EE while reducing the
computational complexity of multi-agent reinforcement
learning, we adopt a hierarchical approach. Specifically,
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FIGURE 1. System model of proposed hierarchical multi-agent Q-learning framework for optimal frequency reuse and transmit power
control in multi-UAV wireless networks.

the proposed algorithm consists of distributed multi-
agent inner-loop RL for finding the optimal transmit
power of UTs and centralized outer-loop RL for deter-
mining the optimal frequency reuse factor. The simul-
taneous adjustment of these factors is very challenging
and complicated.

• To reduce the complexity of inner-loop RL, we propose
a distributedmulti-agent approach. In the inner-loop RL,
each agent only considers its own state but shares its
reward with others. That is, after gathering the separate
reward from each agent, the central head redistributes
this shared reward at each time step so that the overall
reward of the hierarchical reinforcement learning can be
maximized.

• Even in the hexagonal prism-shaped three-dimensional
environment where UTs are continuously moving, the
proposed algorithm can well-converge to the optimal
solution obtained by the exhaustive search algorithm.
This demonstrates the practicality and scalability of our
proposed algorithm.

The rest of this paper is organized as follows. In Section II,
we describe the air-to-ground (A2G) channel model and
UAV mobility model. Additionally, we propose a hierar-
chical multi-agent Q-learning-based optimal frequency reuse
and power control algorithm in Section III. In Section IV,
we demonstrate that the proposed algorithm outperforms
the conventional algorithms with respect to network-wide
EE. Finally, the conclusions are drawn in Section V. The

notations and symbols used in this paper are summarized in
Table 1.

II. SYSTEM MODEL
Fig. 1 represents the system model of the proposed hierarchi-
cal multi-agent Q-learning framework for optimal frequency
reuse and transmit power control in uplink multi-UAV wire-
less networks. We consider a hexagonal prism-shaped three-
dimensional cell architecture with Ng GCSs and Nu UTs, and
the number of cells per cluster is determined by the frequency
reuse factor (µ).

A. AIR-TO-GROUND (A2G) CHANNEL MODEL
In the A2G channel model, the line-of-sight (LoS) signal
between UTs and GCSs may be occasionally blocked by
ground buildings and obstacles so that LoS and non-LoS
(NLoS) propagations should be separately considered. Thus,
we herein utilize the elevation angle-dependent probabilistic
LoS model as the A2G channel model [16]. The LoS path
loss and NLoS path loss between GCS i and UT j can be
represented as

LLoSij = 20 log10

(
4π fcdij
vl

)
+ ζ LoS , (1)

LNLoSij = 20 log10

(
4π fcdij
vl

)
+ ζNLoS , (2)

where vl is the speed of light, fc is the carrier frequency,
and dij denotes the distance between GCS i and UT j. In
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FIGURE 2. Detailed operation of distributed multi-agent Q-learning inner-loop RL.

Equations (1) and (2), the free space path loss is common

and can be calculated as ‘20 log
(
4π fcdij
vl

)
’. Additionally, ζ LoS

and ζNLoS denote the excessive path loss caused by artifi-
cial obstacles (e.g., skyscrapers) in LoS and NLoS paths,
respectively. The excessive path loss varies depending on
the urban environmental deployment models proposed by the
International Telecommunication Union - Radio communi-
cation sector (ITU-R) [17]. Even though the A2G channel
model used in this paper does not consider small-scale fading
directly, it reflects the A2G channel characteristics of various
environmental deployments (suburban, urban, dense urban,
and highrise urban) by using these statistical parameters.

In this A2G channel model, the LoS probability between
GCS i and UT j can be calculated as

PLoSij (θij) =
1

1+ a× exp(−b× (θij − a))
, (6)

where a and b are other statistical parameters representing
the A2G channel characteristics of four urban environmental
deployments. θij is the elevation angle between GCS i and UT
j, and can be calculated as θij = arcsin hj

dij
, where hj denotes

the altitude of UT j. From Equation (6), the NLoS probability
betweenGCS i andUT j can be obtained asPNLoSij = 1−PLoSij .

Using Equations (1)–(6), the average path loss of the A2G
link between GCS i and UT j considering the LoS and NLoS
probabilities can be described as

Lavgij = 10

(
PLoSij /20

)
× LLoSij + 10

(
PNLoSij /20

)
× LNLoSij . (7)

From Equation (7), the received power of GCS i from UT j
(PRXij ) can be represented as

PRXij =
PTXij

10

(
PLoSij /20

)
× LLoSij + 10

(
PNLoSij /20

)
× LNLoSij

, (8)

where PTXij indicates the transmit power of UT j associated
with GCS i.
As mentioned above, instead of instantaneous small-scale

fading, excessive path loss depending on the LoS and NLoS
paths, ζ LoS and ζNLoS , is included in the path loss model.
If the small-scale fading effect is included, the empirical
mean of the signal-to-interference-plus-noise-ratio (SINR)
between GCS i and UT j is given by Equations (3)–(5),
as shown at the bottom of the next page. Here, E{·} is an
expectation, and σ 2 is the thermal noise power. In addition,

LLoS,insij and LNLoS,insij are instantaneous path losses caused
by small-scale fading of LoS and NLOS paths, respectively.
Here, Jensen’s inequality is used in both inequalities (4)
and (5). For a simple performance evaluation, the upper
bound in (5) is adopted as a performance measure instead of
the empirical mean of the SINR. Furthermore, we verify that
the upper bound is sufficiently tight to be used in the proposed
algorithm. Accordingly, SINR between GCS i and UT j can
be represented as

0ij =

Nc∑
k=1

( PRXij · I
ij
t (k)

σ 2 +
∑Nu

m=1,m6=j (P
RX
im ·

∑Ng
n=1,n6=i I

nm
t (k))

)
,

(9)
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I ijt (k) =

{
1, if k-th resource is assigned to UT j,
0, otherwise.

(10)

In Equation (10), I ijt (k) is an indicator function that deter-
mines whether the k-th frequency resource of GCS i is
assigned to UT j.

B. UAV MOBILITY MODEL
UTs’movement ismodeled as amixedmobility (MM)model,
which is a combination of the random waypoint and random
walk models [18]. The detailed operation of the mixed mobil-
ity model is described as follows.

1) When the current way point is hWj (t), UT j ran-

domly selects the next way point hWj (t + 1) between

[hmin, hmax]. Additionally, UT j randomly selects a hor-
izontal movement speed vHj (t) between [v

H
min, v

H
max] and

an azimuthal φHj (t) between [180◦,−180◦].
2) UT j ascends or descends to the next way point hWj

(t + 1) with a vertical movement speed vVj (t) between
[vVmin, v

V
max].

3) At the (xj(t), yj(t)) position, UT j randomly chooses the
dwell time T dj between [T dmin,T

d
max].

4) According to the flight maintenance probability psj ,
UT j holds or alters its position during T dj as follows.

xj(t+1)=

{
xj(t), 1−psj ,

xj(t)+vHj (t) cos (φ
H
j (t))×T

d
j , psj .

(11)

yj(t+1)=

{
yj(t), 1−psj ,

yj(t)+vHj (t) sin (φ
H
j (t))×T

d
j , psj .

(12)

5) The process is repeated until the learning is complete.

III. HIERARCHICAL MULTI-AGENT Q-LEARNING FOR
OPTIMAL FREQUENCY REUSE AND POWER CONTROL
To maximize network-wide EE in multi-UAV wireless net-
works while reducing the computational complexity of RL,
we propose a hierarchical multi-agent Q-learning framework.
As shown in Fig. 1, the proposed RL framework consists
of distributed multi-agent inner-loop RL for finding UTs’
optimal transmit power and centralized outer-loop RL for
determining the optimal frequency reuse factor. The change
in the frequency reuse factor requires a large control overhead
in terms of the entire network so that it needs to be adjusted
intermittently through the outer-loop RL. In contrast, UTs’
transmit power can be controlled every time step through the
inner-loop RL to maximize network-wide EE. The detailed
operations of the inner-loop RL and the outer-loop RL are as
follows.

A. INNER-LOOP RL
The goal of the inner-loop RL is to find the optimal transmit
power of UTs for maximizing EE. Fig. 2 shows the detailed
operation of the distributed multi-agent inner-loop RL. In the
inner-loop RL, each GCS performs the role of an agent.
According to the frequency reuse factor (µ) the number of fre-
quency resources available in each agent is determined. Addi-
tionally, each agent should manage µ̃n different Q-tables,
where µ̃n is the number of divisors of µn. Here, µn denotes
the maximum value of µ, and µ is determined by the outer-
loop RL. Namely,µ is one of the divisors ofµn. Additionally,
the agents share their rewards with the central head, and the
integrated reward is redistributed to the agents in each time
step. In the proposed inner-loop RL algorithm, because each
agent considers only its action set and state set, the computa-
tional complexity of the proposed algorithm is significantly
reduced compared to the centralized Q-learning algorithm.
Detailed descriptions for the state, action, and reward of the
inner-loop RL are expressed as follows.

0ij =

[
PLoSij · E


Nc∑
k=1

( PTXij × I
ij
t (k)

LLoS,insij (σ 2 +
∑Nu

m=1,m6=j (P
RX
im ×

∑Ng
n=1,n6=i I

nm
t (k)))

)
+PNLoSij · E


Nc∑
k=1

( PTXij × I
ij
t (k)

LNLoS,insij (σ 2 +
∑Nu

m=1,m6=j (P
RX
im ×

∑Ng
n=1,n6=i I

nm
t (k)))

)
]
, (3)

≤

[
PLoSij ·

Nc∑
k=1

( PTXij
LLoSij

×
I ijt (k)

σ 2 +
∑Nu

m=1,m6=j (P
RX
im ×

∑Ng
n=1,n6=i I

nm
t (k))

)

+PNLoSij ·

Nc∑
k=1

( PTXij
LNLoSij

×
I ijt (k)

σ 2 +
∑Nu

m=1,m6=j (P
RX
im ×

∑Ng
n=1,n6=i I

nm
t (k))

)]
, (4)

≤

Nc∑
k=1

(PTXij
Lavgij
×

I ijt (k)

σ 2 +
∑Nu

m=1,m6=j (P
RX
im ×

∑Ng
n=1,n6=i I

nm
t (k))

)
. (5)
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Algorithm 1: Detailed Procedure of Proposed Hierarchical Multi-Agent Q-Learning Based Optimal Frequency Reuse and
Power Control in Multi-UAV Wireless Networks
1 Place GCSs according to the inter-GCS spacing distance, Dg.
2 Determine the altitude of UTs randomly between hmin and hmax and place UTs within Ru on the basis of the horizontal

position of each GCS.
3 Initialize Q-tables of inner-loop and outer-loop agents, and the frequency reuse factor µ.
4 Partition GCSs into ceil(Ng

µ
) clusters.

5 for Every episode do
6 for Every iteration do
7 Calculate SINR between GCS i and UT j (0ij), for all i and j.
8 Allocate frequency band k of GCS i, which provides the greatest SINR, to UT j, for all j.
9 if mod (t,Touter) == 0 then
10 Choose the outer-loop action AOUTt by decayed ε-greedy policy.

AOUTt =

Random Action, with probability ε,
argmax
AOUTt

Q(SOUTt , :), with probability 1− ε.

11 The central header adjusts the frequency reuse factor µ according to AOUTt and re-partition GCSs.
12 Re-calculate 0ij(t) and η

µ
t (i).

13 Move on to the next state SOUTt+1 , calculate Rt+1, and update the Q-value of outer-loop RL.
Q(SOUTt ,AOUTt )← (1− α)Q(SOUTt ,AOUTt )+ α × (Rt+1 + β ×maxAOUTt+1

Q(SOUTt , :).

14 else
15 Choose the inner-loop action AIN,(i,µ)t by decayed ε-greedy policy.

AIN,(i,µ)t =


Random Action, with probability ε,

argmax
AIN,(i,µ)t

Q(SIN,(i,µ)t , :), with probability 1− ε.

16 GCS i adjusts the transmit power of UT j according to AIN,(i,µ)t (j), for all i and j.
17 Re-calculate 0ij(t) and η

µ
t (i).

18 Move on to the next state SIN,(i,µ)t+1 , calculate Rt+1, and update the Q-value of inner-loop RL.
Q(SIN,(i,µ)t ,AIN,(i,µ)t )← (1− α)Q(SIN,(i,µ)t ,AIN,(i,µ)t )+ α × (Rt+1 + β ×maxAIN,(i,µ)t+1

Q(SIN,(i,µ)t+1 , :).

19 end
20 end
21 Update the three-dimensional positions of UTs based on the mixed UAV mobility model.
22 end

• Inner-loop RL state: When the frequency reuse factor
isµ at time step t , the inner-loop state of GCS i (SIN,(i,µ)t )
is defined as

SIN,(i,µ)t = [sIN,(i,µ)t (1), · · · , sIN,(i,µ)t (Nc)], (13)

sIN,(i,µ)t (k) ∈ {PTXmin, · · · ,P
TX
max,None}. (14)

Here, sIN,(i,µ)t (k) denotes the amount of transmit power
of the k-th frequency resource when the frequency
reuse factor is µ at time step t and |SIN,(i,µ)t | = Nc.
In Equation (14), ‘‘None’’ means that the k-th frequency
resource is not assigned to any UTs. Additionally, PTXmin
and PTXmax indicate the minimum andmaximum transmis-
sion power of UTs, respectively.

• Inner-loop RL action:When the frequency reuse factor
is µ at time step t , GCS i adjusts UTs’ transmit power

associated with it as follows.

AIN,(i,µ)t = [aIN,(i,µ)t (1), · · · , aIN,(i,µ)t (Nc)]. (15)

aIN,(i,µ)t (k) ∈ {1TX
p ,−1TX

p , 0}. (16)

In Equation (15) and (16), AIN,(i,µ)t indicates the inner
loop RL action of GCS i, and aIN,(i,µ)t (k) is the element
of AIN,(i,µ)t . Additionally, 1TX

p , −1TX
p , and ‘‘0’’ repre-

sent ‘‘transmit power up’’, ‘‘transmit power down’’ and
‘‘maintain the current transmit power’’, respectively.

• Inner-loop RL reward: The objective of the proposed
hierarchical multi-agent Q-learning is maximizing the
EE of the multi-UAV wireless networks. Accordingly,
we define EE (ηµt (i)) as

η
µ
t (i) =

Nu∑
j

Nc∑
k

(
Bµ log2(1+ 0ij(t))

PCRTj + PTXij
× I ijt (k)

)
.

(17)
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Here, ηµt (i) is the EE of GCS iwhen the frequency reuse
factor isµ at time step t .Bµ is the bandwidth size of each
frequency resource when the frequency reuse factor is
µ, and Bµ = Btot/Nf where Btot is the total bandwidth
of each cluster and Nf is the total number of frequency
resources. Additionally, PCRTj is the fixed circuit power
consumption of UT j. Using Equation (17), the reward of
the proposed hierarchical multi-agent Q-learning algo-
rithm can be expressed as

Rt =
Ng∑
i

η
µ
t (i),

=

Ng∑
i

Nu∑
j

Nc∑
k

(
Bµ log2(1+ 0ij(t))

PCRTj + PTXij
× I ijt (k)

)
.

(18)

B. OUTER-LOOP RL
To find the optimal frequency reuse factor µ, we consider
a central header that manages all GCSs as the agent of
outer-loop RL. The total number of frequency resources (Nf )
that can be used in the entire network is fixed. Therefore,
according to the variation in µ, the number of resources
available in each GCS (Nc) is different, Nc = Nf /µ. As µ
increases, the number of resources available in each GCS
reduces, but intercell interference also decrease. Therefore,
finding the optimalµ is crucial for maximizing network-wide
EE. Detailed descriptions for the state, action, and reward of
the outer-loop RL are described as follows.
• Outer-loopRL state:At time step t , the outer-loop state
(SOUTt ) is defined as

SOUTt = µ. (19)

In practical wireless networks, the number of divisors of
µn is not large so that the Q-table size of the central-
ized outer-loop RL does not become large. That is, the
Q-table size can be calculated as |SOUTt |×|AOUT

t |where
SOUTt and AOUT

t denote the state set and action set of the
outer-loop RL, respectively.

• Outer-loop RL action: In outer-loop RL, the agent
adjusts the frequency reuse factor µ as follows.

AOUTt ∈ {1µ,−1µ, 0}, (20)

where 1µ, −1µ, and ‘0’ denote ‘‘increase in µ’’,
‘‘decrease in µ’’, and ‘‘maintain the current µ’’,
respectively.

• Outer-loop RL reward: The reward of outer-loop RL
is the same as the reward of inner-loop RL.

C. POLICY
We adopt the decayed ε-greedy model to adaptively control
the ratio between exploitation and exploration [19]. The pol-
icy utilized in this paper is as follows.

at =

Random Action, with probability ε,
argmax
at∈A

Q(st , at ), with probability 1− ε. (21)

TABLE 2. Simulation parameters.

Here, ε = εinit × (1 − εinit)
E

ψ×|A| . εinit and E represent the
initial value of ε and the current episode index, respectively.
Additionally, |A| represents the cardinality of A and ψ is an
exploration parameter to adjust the attenuation rate of ε. It is
noteworthy that the importance of exploration depends on the
number of actions. In this policy, the agent acts randomly
with ε and chooses the optimal action maximizing the reward
obtained from the Q-value with 1 − ε. According to the
variation in ε, we can adaptively adjust the ratio between
exploration and exploitation to find the optimal solution
quickly and accurately.

D. Q-TABLE UPDATE
The Q-table of the proposed hierarchical multi-agent
Q-learning is updated as follows.

Q(St ,At ) ← (1− α)× Q(St ,At )

+α × (Rt+1 + β × max
At+1∈A

Q(St+1,At+1),

(22)

where α and β are the learning rate and discount factor,
respectively. With α, we can control the speed of the Q-value
update, and the ratio between the current reward and the
future expected reward is adjusted by using β.
In the proposed hierarchical multi-agent Q-learning algo-

rithm, first, GCSs are placed with a constant spacing Dg
and UTs are randomly distributed in a three-dimensional
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FIGURE 3. Accumulated average reward for exhaustive search, random
action, and proposed algorithms when Ng = 4, Nu = 8, Nf = 2, Dg = 100,
Ru = 50, and µn = 2.

network area based on each GCS. Because each inner-loop
agent needs to learn µ̃n Q-tables, relatively more learning
opportunities should be given to the inner-loop agent than
the outer-loop agent. Therefore, outer-loop RL performed
intermittently, every Touter. Additionally, in each episode, the
3D positions of UTs are updated according to theMMmodel.
The detailed procedure of the proposed hierarchical multi-
agent Q-learning based optimal frequency reuse and power
control algorithm is summarized in Algorithm 1.

Finally, the proposed hierarchical multi-agent Q-learning-
based optimal frequency reuse and power control problem for
maximizing network-wide EE can be formulated as

P0 : max
PTXt ,µt

Rt =
Ng∑
i

η
µ
t (i) (23)

s.t. C1 : PTXmin ≤ P
TX
ij ≤ P

TX
max, ∀i ∈ Ng, j ∈ Nu,

(24)

C2 :
Ng∑
i

Nc∑
k

I ijt (k) ≤ 1, ∀j ∈ Nu, (25)

C3 :
∞∑
t=0

Ng∑
i∗ 6=i

Nc∑
k

I i
∗j
t (k) = 0, ∀j ∈ Nu, (26)

C4 :
Nc∑
k

Nu∑
j

I ijt (k) ≤ Nc, ∀i ∈ Ng. (27)

Here, C1 is the constraint of the transmit power for the UTs,
and C2 describes the constraint that only one channel of
the serving GCS can be allocated to a UT. Additionally,
C3 defines the constraint that the serving GCS is not changed
during the end of the learning and C4 means that GCS i has
Nc frequency resources.

IV. RESULTS AND DISCUSSION
We show the performance results according to the varia-
tions in the inter-GCS distance (Dg) and cell radius (Ru).
We conducted simulations considering the following (Dg,Ru)
combinations: (100, 50)(m), (100, 80)(m), (200, 100)(m),

(500, 100)(m), (200, 150)(m), and (500, 300)(m). Initially,
users of each cell were randomly distributed within the cell
radius of Ru. However, not all GCSs served the same number
of UTs because each UT associated with the GCS that pro-
vided the highest received signal power. In addition, when
Dg < 2Ru, the number of UTs in a cell boundary or over-
lapping area increases, and the intercell interference becomes
severe. Conversely, when Dg ≥ 2Ru, GCSs might receive
relatively low intercell interference. Other simulation param-
eters are summarized in Table 2. Furthermore, a random
action (RA) algorithm and a hierarchical RL-based binary
action algorithm (HRL-BA) were considered benchmarks
to compare the performance of the proposed algorithm in
terms of network-wide EE. A detailed description of these
benchmark algorithms is as follows.

• Random Action (RA) Algorithm with Fixed µ: Each
UT randomly chooses its transmit power assuming that
µ is fixed. As the optimal solution cannot be obtained in
complicated network environments, the convergence of
the proposed hierarchical multi-agent Q-learning algo-
rithm to the optimal solution can be roughly demon-
strated through the random action algorithm. That is,
because of the extremely high computational complexity
required for obtaining the optimal solution based on the
exhaustive search, we compared the performance of the
proposed algorithm with the random action algorithm
for each µ.

• Hierarchical RL-based Binary Action (HRL-BA)
Algorithm: Similar to the proposed algorithm, HRL-BA
exploits a hierarchical multi-agent Q-learning frame-
work. However, HRL-BA has binary actions when
agents adjust the transmit power of UTs. HRL-BA has a
relatively small computational complexity compared to
the proposed algorithm.

Fig. 3 shows the accumulated average reward versus
episode for exhaustive search, random action, and proposed
algorithms when Ng = 4, Nu = 8, Nf = 2, Touter =
20, Dg = 100, Ru = 50, and µn = 2. To obtain these
results, we performed 1, 000 episodes, where each episode
had 5, 000 iterations. As shown in this figure, we find that
the proposed hierarchical multi-agent RL algorithmwell con-
verges to the optimal solution obtained by the exhaustive
search algorithm.

Figs. 4a-4f show the accumulated average reward ver-
sus episode for the proposed, HRL-BA, and random action
algorithms under Ng = 12, Nu = 72, and Nf =
6 according to combinations of (Dg,Ru). Figs. 4a, 4b,
4c, 4d, 4e, and 4f show the results under (Dg,Ru) =
(100, 50)(m), (100, 80)(m), (200, 100)(m), (500, 100)(m),
(200, 150)(m), (500, 300)(m), respectively. To obtain these
results, we performed 1, 000 episodes, where each episode
had 50, 000 iterations. Each random action algorithm had
a fixed frequency reuse factor. Thus, this algorithm can-
not obtain the performance improvement according to the
change in the frequency reuse factor. That is, the random
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FIGURE 4. Accumulated average EE for proposed and random action algorithms under Ng = 12, Nu = 72, and Nf = 6 according to
variation in (Dg,Ru).

TABLE 3. Maximum EE and throughput for proposed and random action algorithms Ng = 12, Nu = 72, and Nf = 6 according to variation in (Dg,Ru).

action algorithm can obtain only performance improvement
according to power control under the fixed frequency reuse
factor. If the transmit power of a UT becomes larger, the
received signal strength increases. At the same time, the
intercell interference signal could increase, making it very
important and difficult to obtain the optimal transmission
power.

By comparing the combinations of (Fig. 4a, Fig. 4b) and
(Fig. 4c, Fig. 4e), when Ru increases for the same Dg, the
EE relatively decreases due to the increase in the amount
of intercell interference. In contrast, when Dg increases for
the same Ru, EE can increase because the intercell inter-
ference decreases. Additionally, since each GCS can use
more frequency resources when µ is low, the average EE
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FIGURE 5. Accumulated average EE for proposed algorithms according to
variation in Touter when Ng = 8, Nu = 32, Nf = 4, Dg = 100, Ru = 50,
µn = 4.

value considering the relatively large number of users may
be smaller than when µ is high. Furthermore, as shown in
these figures, HRL-BA has a slightly lower EE than the
proposed algorithm. Because there are only two actions to
choose from, performance degradation in terms of EE might
occur in HRL-BA.

Because obtaining the optimal solution by using the
exhaustive search is impossible owing to the computational
complexity, we find that the proposed algorithm can roughly
converge to the optimal solution for all simulation scenarios
through the error bars in Figs. 4a-4f. That is, by adjusting
UT’s transmit power in inner-loop RL and finding the opti-
mal frequency reuse factor in outer-loop RL, the proposed
hierarchical multi-agent Q-learning can increase the chances
of finding the optimal solution.

Moreover, the performance behavior of the proposed algo-
rithm according to the variation in Touter is shown in Fig. 5.
When Touter = 2, very frequent changes of µ are needed,
and thus it will be a significant burden to network operators.
In contrast, when Touter becomes significantly larger, it is
difficult to find the optimal number of frequency resources
in each cell, and thus large reward oscillations occur as the
episode progresses. That is, GCSs should find the optimal
network-wide EE by performing transmit power control only.
Therefore, it is very important to set an appropriate Touter
value in consideration of the characteristics of the network
environment.

Table 3 summarizes the maximum EE and throughput for
the proposed and random action algorithm under Ng = 12,
Nu = 72, and Nf = 6 according to the variation in (Dg,Ru).
As shown in this table, EE and throughput are significantly
affected by the variations in Dg and Ru. We find that the
largestDg and the smallest Ru give the greatest EE result, e.g.,
(500, 100). As mentioned before, when Dg ≥ 2Ru, GCSs
might receive relatively lower intercell interference leading
to an increase in EE and throughput. Conversely, when Ru
increases for the same Dg, the intercell interference becomes
severe because the number of UTs in a cell boundary or
overlapping area increases. Consequently, EE and throughput
can become worse.

V. CONCLUSION
In this paper, we propose a hierarchical multi-agent
Q-learning-based optimal frequency reuse and power con-
trol algorithm to maximize network-wide EE in uplink
multi-UAV wireless networks. First, to mitigate an intercell
interference problem, we focused on obtaining the optimal
frequency reuse factor with centralized outer-loop RL. Addi-
tionally, UTs’ transmit power was optimally adjusted by
using distributed inner-loop RL. Because the simultaneous
adjustment of these factors is very challenging and com-
plicated in practice, it is almost impossible to propose an
optimal algorithm working in real-time. Nevertheless, in this
paper, we obtained the best EE results with the hierarchical
multi-agent Q-learning algorithm compared to the random
action algorithms using the fixed frequency reuse factor.
To evaluate performance in various network environments,
we considered many (Dg,Ru) combinations. Even in the case
when the number of UTs in a cell boundary or overlap-
ping area increases, we showed that the proposed algorithm
outperformed conventional algorithms and converged. For
further work, we will investigate the joint optimization of
power consumption at a transceiver and a propulsion sys-
tem for maximizing network-wide EE in multi-UAV wireless
networks.
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